Calculus2

Homework solution

A) Select the correct answer

1) The partial fraction decomposition of $\frac{1}{x^{2}\left(x^{2}+3\right)}$ is
a) $\frac{A}{x^{2}}+\frac{B x+C}{x^{2}+3}$
(b) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+3}$
c) $\frac{A}{x^{2}}+\frac{B}{x^{2}+3}$
d) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{2}+3}$
2) $\int \frac{\cos (\ln x)}{x} d x=$
($\sin (\ln x)+c$
b) $-\sin (\ln x)+c$
c) $\ln x \cos (\ln x)+c$
d) $\cos (\ln x)+c$
3) If $(x, y)=(-1,-1)$ then the polar coordinates (r, θ) is equal to
a) $\left(\sqrt{2}, \frac{\pi}{4}\right)$
b) $\left(\sqrt{2}, \frac{3 \pi}{4}\right)$
(e) $\left(\sqrt{2}, \frac{5 \pi}{4}\right)$
d) $\left(\sqrt{2}, \frac{7 \pi}{4}\right)$
4) The equation $r=4 \sec \theta$ in polar coordinates represents a
a) Horizontal line $y=4$
(b) Vertical line $x=4$
c) Circle with center $(0,2)$ and $r=2$
d) Circle with center $(2,0)$ and $r=2$
5) Only one of the following series diverges (See Quiz solution)
(a) $\quad \sum \frac{5}{\sqrt[3]{n}}$
b) $\sum \frac{5}{n^{1.3}}$
c) $\sum \frac{5}{n^{3}+1}$
d) $\sum \frac{5}{n^{\sqrt{3}}}$
6) $\sum_{0}^{\infty} \frac{3}{2^{n}}=3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots=\frac{a}{1-r}=\frac{3}{1-\frac{1}{2}}=6$
a) 3
b) $\frac{3}{2}$
c) 2
(d) 6
7) The sequence $\left\{\frac{2^{n}}{3^{n+1}}\right\}_{n=1}^{\infty}$
$\lim _{n \rightarrow \infty} \frac{2^{n}}{3^{n+1}}=\lim _{n \rightarrow \infty} \frac{2^{n}}{3^{n} * 3}=\lim _{n \rightarrow \infty}\left(\frac{2}{3}\right)^{n} * \frac{1}{3}=0 \quad$ since $\quad \lim _{n \rightarrow \infty} a^{n}=\left\{\begin{array}{cc}0 & 0<a<1 \\ \infty & a>1\end{array}\right.$
a) converge to 1
(b) converge to 0
c) converge to 2
d) Diverge
8) If the partial sum of $\sum_{n=1}^{\infty} a_{n}$ is $S_{n}=\frac{2 n^{2}+3 n+1}{n^{2}+5 n+3}$, then the series
$\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{2 n^{2}+3 n+1}{n^{2}+5 n+3}=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{2}}=2 \quad$ (Note: this is a series not a sequence)
a) converge to 3
b) converge to 0
c) diverge
(-d) converge to 2

9) One of the following series converges

$\begin{aligned} & \text { a) }-3+3-3+3-3+\ldots \\ & =\sum(-1)^{n} 3 \end{aligned}$	b) $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=\sum \frac{1}{n^{2}}$	$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=\sum \frac{1}{n}$	$\sum \cos n$
Diverges by Divergent test $\lim _{n \rightarrow \infty}(-1)^{n} 3 \text { D.N.E }$	Conv. P-series $\mathrm{p}=2>1$	Diverge P-series $\mathrm{p}=1 \leq 1$	Diverges by Divergent test $\lim _{n \rightarrow \infty} \cos n$ D.N.E

10) The series $\sum_{1}^{\infty} \sqrt[n]{e} \quad \lim _{n \rightarrow \infty} e^{\frac{1}{n}}=e^{0}=1 \quad \neq 0$
a) Convergent by p-series test
b) Divergent by p-series test
c) Diverges by Divergent test.
d) Convergent by Geometric series test
11) The improper integral
$\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\left.\lim _{k \rightarrow \infty} \tan ^{-1} x\right|_{0} ^{k}=\lim _{k \rightarrow \infty} \tan ^{-1} k-\tan ^{-1} 0=\frac{\pi}{2}-0=\frac{\pi}{2}$
a) Converge and equal $\frac{\pi}{2}$
b) Converge and equal $\frac{\pi}{4}$
c) Converge and equal 0
d) diverge
12) $\sum_{0}^{\infty} \frac{(-2)^{n}}{n!}=e^{-2} \quad$ (Remember: $\sum_{0}^{\infty} \frac{(x)^{n}}{n!}=e^{x} \quad$)
a) e^{2}
b) $-2 e$
(e) $\frac{1}{e^{2}}$
d) $\frac{1}{e^{2}}-2$
B) Fill in the blanks with the answers
13) The trigonometric substitution that solves the integral

$$
\int \frac{1}{x \sqrt{4 x^{2}+25}} d x \text { is } _\underline{2 x=5 \tan \theta}
$$

2) $\int_{1}^{\infty} \frac{1}{x^{5}} d x=$
$\lim _{k \rightarrow \infty} \int_{1}^{k} x^{-5} d x=\left.\lim _{k \rightarrow \infty} \frac{x^{-4}}{-4}\right|_{1} ^{k}=\left.\lim _{k \rightarrow \infty} \frac{1}{-4 x^{4}}\right|_{1} ^{k}=\lim \frac{1}{-4 k^{4}}-\frac{1}{\substack{-4}}=\frac{1}{4}$
3) Given that $\frac{1}{1-x}=1+x+x^{2}+\cdots-1<x<1$, the power series

$$
\text { of } \frac{x}{4+x}=x \frac{1}{4\left(1-\left(-\frac{x}{4}\right)\right)}=\frac{x}{4} \sum_{0}^{\infty}\left(-\frac{x}{4}\right)^{n}=\frac{x}{4} \sum_{0}^{\infty}(-1)^{n}\left(\frac{x}{4}\right)^{n}=\sum_{0}^{\infty}(-1)^{n}\left(\frac{x}{4}\right)^{n+1}
$$

where $\quad-\mathbf{1}<-\frac{x}{4}<1$, hence $-\mathbf{4}<\boldsymbol{x}<\mathbf{4}$

